Respuesta :
Answer:
- 68.3g
Explanation:
1. Word equation:
- mercury(II) oxide → mercury + oxygen
2. Balanced molecular equation:
- 2HgO → 2Hg + O₂(g)
3. Mole ratio
Write the ratio of the coefficients of the substances that are object of the problem:
[tex]2molHgO/1molO_2[/tex]
4. Calculate the number of moles of O₂(g)
Use the equation for ideal gases:
[tex]pV=nRT\\\\\\n=\dfrac{pV}{RT}\\\\\\n=\dfrac{0.970atm\times5.20L}{0.08206atm.L/K.mol\times 390.0K}\\\\\\n=0.1576mol[/tex]
5. Calculate the number of moles of HgO
[tex]\dfrac{2molHgO}{1molO_2}\times 0.1576molO_2=0.315molHgO[/tex]
6. Convert to mass
- mass = # moles × molar mass
- molar mass of HgO: 216.591g/mol
- mass = 0.315mol × 216.591g/mol = 68.3g