Match each function to the equation of the tangent line to its graph at x = 2.
f(x) = x2 + 6x − 16
y = 48 – 11x
g(x) = x2 − 49x − 456
y = 12x + 67
h(x) = -x2 − 7x + 44
y = 95x – 96
i(x) = x2 + 169x + 820
y = 10x – 20
j(x) = x2 + 91x − 92
k(x) = x2 + 15x + 56
l(x) = -x2 + 16x + 63

Respuesta :

1) The function is:

[tex]f(x) = {x}^{2} + 6x - 16[/tex]

At x=2,

[tex]f(2) = {2}^{2} + 6(2) - 16 \\ f(2) = 4 + 12 - 16 = 0[/tex]

Find the first derivative,

[tex]f'(x) = 2x + 6[/tex]

Find the slope at x=2

[tex]f'(2) = 2 \times 2 + 6 = 10[/tex]

The equation of the tangent line is given by:

[tex]y - f(2) = f'(2)(x - 2)[/tex]

[tex]y - 0= 10(x - 2) \\ y = 10x - 20[/tex]

Therefore

[tex] \boxed{f(x) = {x}^{2} - 6x + 16 \to \: y = 10x - 21}[/tex]

2) The given function is

[tex]g(x) = {x}^{2} - 49x - 456[/tex]

[tex]g(2) = {2}^{2} - 49 \times 2 - 456 = - 550[/tex]

[tex]g'(x) = 2x - 49 \\ g'(2) = 2 \times 2 - 49 = - 45[/tex]

The equation of the tangent is

[tex]y - g(2) = g'(2)(x - 2) \\ y + 550 = - 45(x - 2) \\ y + 550 = - 45x + 90 \\ y = - 45x + 90 - 550 \\ y = - 45x - 460[/tex]

[tex] \boxed{g(x) = {x}^{2} - 45x - 456 \to \: y = - 45x - 460}[/tex]

3) The function is

[tex]h(x) = - {x}^{2} - 7x + 44[/tex]

Now

[tex]h(2) = - {2}^{2} - 7 \times 2 + 44 = 26[/tex]

The first derivative is

[tex]h'(x) = - 2x - 7[/tex]

[tex]h'(2) = - 2 \times 2 - 7 = - 14[/tex]

The equation of tangent at:

x=2

[tex]y - h(2) = h'(2)(x - 2) \\ y - 26 = - 14(x - 2) \\ y - 26 = - 14x + 28 \\ y = - 14x + 28 + 26 \\ y = - 14x + 54[/tex]

[tex] \boxed{h(x) = - {x}^{2} - 7x + 44 \to \: y = - 14x + 54}[/tex]

Ver imagen kudzordzifrancis
Ver imagen kudzordzifrancis

Answer:

Step-by-step explanation:

Ver imagen tonyalwood