Answer:
State space
[tex]S=\{F,So,J,Sr,G,D\}[/tex]
Transition probability matrix
[tex]\begin{bmatrix} & F & So&J&Sr&G&D\,\\ F &0.03&0.91&0&0&0&0.06\,\\So&0&0.03&0.91&0&0&0.06\\J&0&0&0.03&0.93&0&0.04\\ Sr&0&0&0&0.03&0.93&0.04\\G&0&0&0&0&1&0\\D&0&0&0&0&0&1\end{bmatrix}[/tex]
The transition graph is attached.
Step-by-step explanation:
The state space for this Markov chain is all the possible states that the variable can take.
In this case the student can be: Freshman, Sophomore, Junior, Senior, Graduate and Drop out
[tex]S=\{F,So,J,Sr,G,D\}[/tex]
The transition probability matrix for this state space is:
[tex]\begin{bmatrix} & F & So&J&Sr&G&D\,\\ F &0.03&0.91&0&0&0&0.06\,\\So&0&0.03&0.91&0&0&0.06\\J&0&0&0.03&0.93&0&0.04\\ Sr&0&0&0&0.03&0.93&0.04\\G&0&0&0&0&1&0\\D&0&0&0&0&0&1\end{bmatrix}[/tex]
The transition graph is attached.