Respuesta :

a^2 + b^2 = c^2....a and b are the legs and c is the hypotenuse
a^2 + 8.5^2  = 12.6^2
a^2 + 72.25  = 158.76
a^2 = 158.76 - 72.25
a^2 = 86.51
a = sq rt 86.51
a = 9.3....so leg a is 9.3

Answer:

Option A - 9.3

Step-by-step explanation:

Given : A right triangle has a hypotenuse c = 12.6 and a leg b = 8.5.

To find : What is the approximate length of leg a?

Solution :

Since it is a right angle triangle ,

We apply Pythagoras theorem,

[tex]H^2=B^2+P^2[/tex]

Where H is hypotenuse c=12.6

B is the base b =8.5

P is the perpendicular a=?

Substituent in the formula,

[tex]c^2=b^2+a^2[/tex]

[tex]a=\sqrt{c^2-b^2}[/tex]

[tex]a=\sqrt{(12.6)^2-(8.5)^2}[/tex]

[tex]a=\sqrt{158.76-72.25}[/tex]

[tex]a=\sqrt{86.51}[/tex]

[tex]a=9.30[/tex]

Therefore, Option A is correct.

The length of leg a is 9.3.