Respuesta :
Answer:
1) 25
2) 3.507
3) 4.35
Step-by-step explanation:
Note: from the question, the number of F2F data is 15 not 12
1) for degree of freedom:
12 + 15 - 2 = 25
2) formula for standard error:
[tex] S_e_r = A/(sqrt*N) [/tex]
But A is standard deviation. To find the standard deviation we use:
S.d = [sqrt*(E(xi - u)^2) / N]
Where xi = mean
u = individual data
Therefore
Mean = (60+100+95+80+67+88+76+86+90+95+91+100) / 12 =
1028/12 = 85.7
[tex] (xi -u)^2 = [/tex]
[tex] (85.7-60)^2 = 660.49 [/tex]
[tex] (85.7-100)^2= 204.49 [/tex]
[tex] (85.7-95)^2 = 86.49 [/tex]
[tex] (85.7 - 80)^2 = 32.49 [/tex]
[tex] (85.7 - 67)^2 = 349.69 [/tex]
[tex] (85.7-88)^2 = 5.29 [/tex]
[tex] (85.7-76)^2 = 94.09 [/tex]
[tex] (85.7 - 86)^2 = 0.09 [/tex]
[tex] (85.7 - 90)^2 = 18.49 [/tex]
[tex] (85.7-95)^2 = 86.49 [/tex]
[tex] (85.7-91)^2 = 28.09 [/tex]
[tex] (85.7-100)^2 = 204.9 [/tex]
[tex] E(xi- u)^2 = 1771.09 [/tex]
[tex] S.d = sqrt*[(E(xi-u)^2)/N] [/tex]
[tex] = sqrt*(1771.09/12) [/tex]
[tex] = 12.149 [/tex]
So, standard error for online class=
[tex] S_e_r = 12.149/√12 = 3.507 [/tex]
3) We will use same method as in number two.
Mean= 1169/15 =77.93
S.d = √(4238.85/15) = 16.81
For standard error of F2F class:
[tex] S_e_r = 16.81/sqrt*15 = 4.35 [/tex]
Note: E represents summation here