Respuesta :
cos x = adyacent side / hypothenuse
adyacent side = x = 15
hypothenuse = √(x^2 + y^2) = √[(15)^2 + (-8)^2] = 17
cos x = 15/17 ≈ 0.88
adyacent side = x = 15
hypothenuse = √(x^2 + y^2) = √[(15)^2 + (-8)^2] = 17
cos x = 15/17 ≈ 0.88
Answer:
The value of cosθ is [tex]\frac{15}{17}[/tex]
Step-by-step explanation:
It is given that an angle θ with the point (15, −8) on its terminating side.
Here x=adjacent side=15 units and y=opposite side =-8 units,
Using pythagoras theorem,
[tex]\text{hypotenuse}^2=\text{base}^2+\text{opposite side}^2[/tex]
[tex]\text{hypotenuse}^2=(15)^2+(-8)^2[/tex]
[tex]\text{hypotenuse}^2=225+64=289[/tex]
[tex]\text{hypotenuse}^2=17[/tex]
Cosine is defined as
[tex]\cos \theta=\frac{base}{hypotenuse}[/tex]
[tex]\cos \theta=\frac{15}{17}[/tex]
Therefore the value of cosθ is [tex]\frac{15}{17}[/tex].
