Respuesta :

cos x = adyacent side / hypothenuse

adyacent side = x = 15

hypothenuse = √(x^2 + y^2) = √[(15)^2 + (-8)^2] = 17

cos x = 15/17 ≈ 0.88

Answer:

The value of cosθ is [tex]\frac{15}{17}[/tex]

Step-by-step explanation:

It is given that  an angle θ with the point (15, −8) on its terminating side.

Here x=adjacent side=15 units and y=opposite side =-8 units,

Using pythagoras theorem,

[tex]\text{hypotenuse}^2=\text{base}^2+\text{opposite side}^2[/tex]

[tex]\text{hypotenuse}^2=(15)^2+(-8)^2[/tex]

[tex]\text{hypotenuse}^2=225+64=289[/tex]

[tex]\text{hypotenuse}^2=17[/tex]

Cosine is defined as

[tex]\cos \theta=\frac{base}{hypotenuse}[/tex]

[tex]\cos \theta=\frac{15}{17}[/tex]

Therefore the value of cosθ is [tex]\frac{15}{17}[/tex].

Ver imagen DelcieRiveria