You have a 1.8m long copper wire. You want to make an N-turn current loop that generates a 2.0mT magnetic field at the center when the current is 1.3A . You must use the entire wire.. What will be the diameter of your coil?

Respuesta :

Answer:

The diameter is  0.022m.

Explanation:

The magnetic field [tex]B[/tex] at the center of the coil is given by

(1). [tex]B = \dfrac{\mu_0 NI}{d}[/tex]

where [tex]\mu_0 = 1.26*10^{-6} m\:kg\:s^{-2} A^{-2}[/tex] is the magnetic constant, [tex]I[/tex] is the current, [tex]N[/tex] number of coils, and [tex]d[/tex] is the diameter of the coil.

Now, if we call [tex]L[/tex] the length of the wire, then it must be true that

[tex]\pi dN = L[/tex] (this says [tex]N[/tex] coil circumferences ([tex]c=\pi d[/tex]) fit into [tex]L[/tex] )

[tex]\therefore N = \dfrac{L}{\pi d }[/tex]

putting this into equation (1) we get:

[tex]B = \dfrac{\mu_0 IL }{\pi d^2}[/tex]

solve for [tex]d:[/tex]

[tex]\boxed{d = \sqrt{\dfrac{\mu_0I L }{\pi B} }}[/tex]

putting in the numerical values

[tex]\mu_0 = 1.26*10^{-6} m\:kg\:s^{-2} A^{-2}[/tex]

[tex]I =1.3A[/tex]

[tex]L= 1.8m[/tex]

[tex]B =2.0*10^{-3}T[/tex]

we get:

[tex]d = \sqrt{\dfrac{(1.26*10^{-6})(1.3) *1.8 }{\pi (2.0*10^{-3})} }[/tex]

[tex]\boxed{d = 0.022m}[/tex]