Respuesta :

Answer:

Part A) [tex]h(4) -m(16)=-4[/tex]

Part B) The distance between the y-intercepts is equal to 4 units

Part C) The value of h(x) will always be greater than the value of m(x) for any value of x

Step-by-step explanation:

Part A) What is the value of h(4) -m(16)

we have

[tex]h(x)=\frac{1}{2}(x-2)^2[/tex]

For x=4

[tex]h(4)=\frac{1}{2}(4-2)^2=2[/tex]

Find the equation of the line m(x)

Find the slope

take the points

(8,2) and (12,4)

The formula to calculate the slope between two points is equal to

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

substitute

[tex]m=\frac{4-2}{12-8}[/tex]

[tex]m=\frac{2}{4}[/tex]

[tex]m=\frac{1}{2}[/tex]

Find the equation of the line in slope intercept form

[tex]y=mx+b[/tex]

we have

[tex]m=\frac{1}{2}[/tex]

[tex]point\ (8,2)[/tex]

substitute

[tex]2=\frac{1}{2}(8)+b[/tex]

solve for b

[tex]b=-2[/tex]

[tex]y=\frac{1}{2}x-2[/tex]

therefore

[tex]m(x)=\frac{1}{2}x-2[/tex]

Find m(16)

[tex]m(16)=\frac{1}{2}(16)-2=6[/tex]

so

[tex]h(4) -m(16)=2-6=-4[/tex]

Part B) we know that

The y-intercept is the value of y when the value of x is equal to zero

Find the y-intercept of h(x)

For x=0

[tex]h(0)=\frac{1}{2}(0-2)^2=2[/tex]

Find the y-intercept of m(x)

For x=0

[tex]m(0)=\frac{1}{2}(0)-2=-2[/tex]

therefore

The distance between the y-intercepts is equal to 2-(-2)=4 units

Part C)

Graph both equations

[tex]h(x)=\frac{1}{2}(x-2)^2[/tex]

[tex]m(x)=\frac{1}{2}x-2[/tex]

using a graphing tool

see the attached figure

The value of h(x) will always be greater than the value of m(x) for any value of x

Ver imagen calculista