Respuesta :

[tex] log_{10} 50=1.70[/tex]

Answer:

Using the logarithmic rules:

[tex]\log_b a = \frac{\log a}{\log b}[/tex]

Given the  logarithmic function:

[tex]f(x) = \log_{10} x[/tex]

We have to find the value of f(50), rounded to nearest hundredth.

Substitute the value of x = 50 in [1] we have;

[tex]f(50) = \log_{10} 50[/tex]

Apply the logarithmic rules:

[tex]f(50) = \frac{\log 50 }{\log 10}[/tex]

Simplify:

[tex]f(50) = \frac{1.69897000434}{1}[/tex]

⇒[tex]f(50)=1.69897000434[/tex]

Therefore, the value of f(50), rounded to nearest hundredth, is 1.70