Answer:
Using the logarithmic rules:
[tex]\log_b a = \frac{\log a}{\log b}[/tex]
Given the logarithmic function:
[tex]f(x) = \log_{10} x[/tex]
We have to find the value of f(50), rounded to nearest hundredth.
Substitute the value of x = 50 in [1] we have;
[tex]f(50) = \log_{10} 50[/tex]
Apply the logarithmic rules:
[tex]f(50) = \frac{\log 50 }{\log 10}[/tex]
Simplify:
[tex]f(50) = \frac{1.69897000434}{1}[/tex]
⇒[tex]f(50)=1.69897000434[/tex]
Therefore, the value of f(50), rounded to nearest hundredth, is 1.70