The units digit of a two digit number is 1 more than twice the tens digit. If the digits are reversed, the new number is 36 more than the original number. Find the number.

Respuesta :

frika

Answer:

37

Step-by-step explanation:

Let the initial number be [tex]xy=10x+y[/tex].

Initial number:

Units digit = y

Tens digit = x

The units digit of a 2-digit number is 1 more than twice the tens digit, then

[tex]y=2x+1[/tex]

Reversed number is [tex]yx=10y+x.[/tex]

If the new number is 36 more than the original number, then

[tex](10y+x)-(10x+y)=36[/tex]

Simplify this equation:

[tex]10y+x-10x-y=36\\ \\9y-9x=36\\ \\y-x=4[/tex]

Substitute [tex]y=2x+1[/tex] into the equation [tex]y-x=4:[/tex]

[tex](2x+1)-x=4\\ \\2x+1-x=4\\ \\x+1=4\\ \\x=3\\ \\y=2\cdot 3+1=7[/tex]

Initial number: 37