Respuesta :
With the use of a calculator with statistical functions, the standard deviation was found to be 12.54
Answer:
1572.5
Step-by-step explanation:
David : 75
Aaron : 75
Ashley : 60
Gina : 75
Andrew : 75
Kei : 95
Monica : 100
Anna : 60
Lucas : 75
Jennifer : 65
First calculate the mean
[tex]Mean = \frac{\text{Sum of all observations}}{\text{Total no. of observations}}[/tex]
So, [tex]Mean = \frac{75+75+60+75+75+95+100+60+75+65}{10}[/tex]
[tex]Mean = 75.5[/tex]
Standard deviation = [tex]\sum (x_i-\mu)^2[/tex]
So, Standard deviation = [tex](75-75.5)^2+(75-75.5)^2+(60-75.5)^2+(75-75.5)^2+(75-75.5)^2+(95-75.5)^2+(100-75.5)^2+(60-75.5)^2+(75-75.5)^2+(65-75.5)^2[/tex]
Standard deviation = [tex]1572.5[/tex]
Hence the standard deviation is 1572.5