sadkill
contestada

In triangle ABC, if the lengths of sides a and c are 8 centimeters and 16 centimeters, respectively, and the measure of angle c is 35, what is the measure of angle a to two decimal places?

Respuesta :

caylus
Hello,

a=8, c=16, C=35°

sin A/a=SIN C/c (law of sinus)
==> sin A=a/c* sin C=8*16*sin35°=0,286788....
==>A=16,665768...°≈16.66°


Answer:

The approximate measure of angle is 16.67°.

Step-by-step explanation:

Given,

Triangle ABC in which,

Side a = 8 cm, ( side BC )

Side c = 16 cm ( side AB ),

Also, m∠C = 35°,

By the law of sine,

[tex]\frac{sin A}{sin C}=\frac{BC}{AB}[/tex]

By substituting the values,

[tex]\frac{sin A}{sin 35^{\circ}}=\frac{8}{16}[/tex]

[tex]sin A = \frac{8\times sin 35^{\circ}}{16}=0.293892626146[/tex]

[tex]\implies m\angle A=16.665768674\approx 16.67^{\circ}[/tex]