Respuesta :
Hello,
a=8, c=16, C=35°
sin A/a=SIN C/c (law of sinus)
==> sin A=a/c* sin C=8*16*sin35°=0,286788....
==>A=16,665768...°≈16.66°
a=8, c=16, C=35°
sin A/a=SIN C/c (law of sinus)
==> sin A=a/c* sin C=8*16*sin35°=0,286788....
==>A=16,665768...°≈16.66°
Answer:
The approximate measure of angle is 16.67°.
Step-by-step explanation:
Given,
Triangle ABC in which,
Side a = 8 cm, ( side BC )
Side c = 16 cm ( side AB ),
Also, m∠C = 35°,
By the law of sine,
[tex]\frac{sin A}{sin C}=\frac{BC}{AB}[/tex]
By substituting the values,
[tex]\frac{sin A}{sin 35^{\circ}}=\frac{8}{16}[/tex]
[tex]sin A = \frac{8\times sin 35^{\circ}}{16}=0.293892626146[/tex]
[tex]\implies m\angle A=16.665768674\approx 16.67^{\circ}[/tex]