The specific heat capacity of copper is 0.09 cal/g°C. How much energy is needed to flow into a 10-gram sample to change its temperature from 20°C to 21°C?

Respuesta :

ΔT = 21º C - 20 ºC => 1 º C

Q = m x C x ΔT

Q = 10 x 0.09 x 1

Q = 0.9 Cal

hope this helps!

Answer : The amount energy needed is, 0.9 cal

Solution :

Formula used :

[tex]Q=m\times c\times \Delta T=m\times c\times (T_{final}-T_{initial})[/tex]

where,

Q = heat required = ?

m = mass of copper = 10 g

c = specific heat of copper = [tex]0.09cal/g^oC[/tex]      

[tex]\Delta T=\text{Change in temperature}[/tex]  

[tex]T_{final}[/tex] = final temperature = [tex]21^oC[/tex]

[tex]T_{initial}[/tex] = initial temperature = [tex]20^oC[/tex]

Now put all the given values in the above formula, we get :

[tex]Q=10g\times 0.09cal/g^oC\times (21-20)^oC[/tex]

[tex]Q=0.9cal[/tex]

Therefore, the amount energy needed is, 0.9 cal