Answer:
The population reaches 7 million people in the year 2032.
Step-by-step explanation:
We have that
[tex]f(x) = 6.3*(1.0032)^{x}[/tex]
Using this model, find the year when the population reaches 7 million people.
This is x years after 2000, in which x is found when f(x) = 7. So
[tex]f(x) = 6.3*(1.0032)^{x}[/tex]
[tex]7 = 6.3*(1.0032)^{x}[/tex]
[tex](1.0032)^{x} = \frac{7}{6.3}[/tex]
[tex](1.0032)^{x} = 1.11[/tex]
We have to following logarithm rule
[tex]\log{a^{x}} = x\log{a}[/tex]
So we apply log to both sides of the equality
[tex]\log{(1.0032)^{x}} = \log{1.11}[/tex]
[tex]x\log{1.0032} = \log{1.11}[/tex]
[tex]x = \frac{\log{1.11}}{\log{1.0032}}[/tex]
[tex]x = 32.66[/tex]
2000 + 32.66 = 2032
The population reaches 7 million people in the year 2032.