Respuesta :

The possible value for the missing term of the geometric sequence = 250

Step-by-step explanation:

The given  geometric sequence:

1250, _______ ,50

Let x be the possible the missing term.

To find, the possible value for the missing term of the geometric sequence = ?

1250, x , 50

Here, first term([tex]a_{1}[/tex]) = 1250, second term([tex]a_{2}[/tex]) = x and

third term([tex]a_{3}[/tex]) = x

We know that,

∴ Common ratio (r) = [tex]\dfrac{a_{2}}{a_{1}} =\dfrac{a_{3}}{a_{2}}[/tex]

[tex]\dfrac{x}{1250} =\dfrac{50}{x}[/tex]

⇒ x × x = 50 × 1250

⇒ [tex]x^{2}[/tex] = 62500

⇒ x = [tex]\sqrt{62500}[/tex]

⇒ x = 250

∴ The possible value for the missing term of the geometric sequence = 250