Respuesta :
By cosine rule:
c² = a² + b² - 2abCosC
c² = 33² + 37² - 2*33*37Cos120
c² = 1089 + 1369 - 2442(-0.5)
c² = 3679
c = √3679
c ≈ 60.65
Option B.
c² = a² + b² - 2abCosC
c² = 33² + 37² - 2*33*37Cos120
c² = 1089 + 1369 - 2442(-0.5)
c² = 3679
c = √3679
c ≈ 60.65
Option B.
Use the cosine law to answer the question which can be expressed as,
c² = a² + b² -2ab(cos C)
where c is the side opposite to angle C and a and b are the sides adjacent to the angle. Substituting the given values,
c² = 33² + 37² - (2)(33)(37)(cos 120°) = 3679
The value of c is 60.65. Therefore, the length of the third side is approximately 60.65 units.
c² = a² + b² -2ab(cos C)
where c is the side opposite to angle C and a and b are the sides adjacent to the angle. Substituting the given values,
c² = 33² + 37² - (2)(33)(37)(cos 120°) = 3679
The value of c is 60.65. Therefore, the length of the third side is approximately 60.65 units.