Respuesta :

Space

Answer:

[tex]\displaystyle \frac{d}{dx} = 2 \cos x - \sec^2 x[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Derivative Property [Addition/Subtraction]:                                                         [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle y = 2 \sin x - \tan x[/tex]

Step 2: Differentiate

  1. Derivative Property [Addition/Subtraction]:                                                 [tex]\displaystyle \frac{d}{dx} = \frac{d}{dx}[2 \sin x] - \frac{d}{dx}[\tan x][/tex]
  2. Rewrite [Derivative Property - Multiplied Constant]:                                   [tex]\displaystyle \frac{d}{dx} = 2\frac{d}{dx}[\sin x] - \frac{d}{dx}[\tan x][/tex]
  3. Trigonometric Differentiation:                                                                       [tex]\displaystyle \frac{d}{dx} = 2 \cos x - \sec^2 x[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation