Respuesta :
(f + g)(x) = 3x^2 + 2x – 1
g(x) = 2x – 2
f(x) = ? ; 3x^2 + 1
Check by Substituting:
3x^2 + 1 + 2x - 2
Simplify:
3x^2 + 2x - 1
g(x) = 2x – 2
f(x) = ? ; 3x^2 + 1
Check by Substituting:
3x^2 + 1 + 2x - 2
Simplify:
3x^2 + 2x - 1
Answer:
Option A is correct
[tex]f(x)=3x^2+1[/tex]
Step-by-step explanation:
Use:
[tex](f+g)(x) = f(x)+g(x)[/tex]
Given that:
[tex](f+g)(x)=3x^2+2x-1[/tex] and g(x) = 2x-2
then;
[tex](f+g)(x) = f(x)+g(x)[/tex]
Substitute the given values we have;
[tex]3x^2+2x-1 = f(x)+2x-2[/tex]
Subtract 2x-2 from both sides we get;
[tex]3x^2+2x-1 -2x+2= f(x)[/tex]
Combine like terms;
[tex]f(x) = 3x^2+1[/tex]
Therefore, the function f(x) is, [tex]3x^2+1[/tex]