Respuesta :
There are multiple solutions to x+y=7, here are a few. x=1 and y=6:1+6=7, x=2 and y=5: 2+5=7, x=3 and y=4: 3+4=7, and one more, x= 0 and y=7: 0+7=7. Hope this helps.
Answer:
Solution is [tex](1,6)[/tex]
Step-by-step explanation:
An equation of the form[tex]ax+by+c=0[/tex] where [tex]a,b,c[/tex] are coefficients and [tex]x,y[/tex] are variables is a linear equation in two variables This equation is linear as here power of variables [tex]x,y[/tex] is 1. Also, this equation contains two variables [tex]x,y[/tex]. Solution of this equation refers to the values of [tex]x,y[/tex] which satisfies this equation. We can say [tex]\left ( x_0,y_0 \right )[/tex] satisfies the equation [tex]ax+by+c=0[/tex] if [tex]ax_0+by_0+c=0[/tex] .
Given: [tex]x+y=7[/tex]
Take [tex](x_0,y_0)=(1,6)[/tex]
[tex](x_0,y_0)[/tex] satisfies this equation if [tex]x_0+y_0=7[/tex]
L.H.S
[tex]x_0+y_0=1+6=7[/tex]
R.HS
7
As [tex]L.H.S=R.H.S[/tex] , so , point [tex]\left ( x_0,y_0 \right )=\left ( 1,6 \right )[/tex] satisfies this equation