Answer:
a) P(X<100)=0.7855
P(X<200)=0.9418
P(100<X<200)=0.1830
b) P(X>M+2σ)=0.0498
c) Median = 48.74 m
Step-by-step explanation:
If the distance X is modeled by an exponential distribution, with parameter λ=0.01422, we have:
The cumulative probability function can be expressed as:
[tex]F(x)=1-e^{-\lambda x}=1-e^{-0.01422 x}[/tex]
a) The probability that the distance is at most 100 m is:
[tex]F(100)=1-e^{-0.01422\cdot 100}=1-e^{-1.422}=1-0.2412=0.7588[/tex]
The probability that the distance is at most 200 m is:
[tex]F(200)=1-e^{-0.01422\cdot 200}=1-e^{-2.844}=1-0.0582=0.9418[/tex]
The probability that the distance is between 100 and 200 m is:
[tex]F(200)-F(100)=0.9418-0.7588=0.1830[/tex]
b) The mean is M=1/λ=70.3235 and the standard deviation σ=1/λ=70.3235.
So we have to calculate the probability that X exceeds 2 times the s.d. from the mean:
[tex]x=M+2\sigma=70.3235+2*70.3235=210.97\\\\P(x>210.97)=1-F(210.97)\\\\P(x>210.97)=e^{-0.01422*210.97}=e^{3}=0.0498[/tex]
c) The value of the median distance is
[tex]Median=ln(2)/\lambda=0.69314/0.01422=48.74[/tex]