Answer:
d=0.024m
Explanation:
The mass of the isotopes are
[tex]m_{c12}=1.993*10^{-26}kg[/tex]
[tex]m_{c13}=2.159*10^{-26}kg[/tex]
The velocity of isotopes are [tex]v=6.50*10^{5}m/s[/tex]
Charge q=+e=1.6×10⁻¹⁹C and the magnetic field is B=0.5700T
The radius of circular paths for isotopes are:
[tex]r_{1}=\frac{m_{c12}*v}{|q|B} \\r_{1}=\frac{1.993*10^{-26}kg*6.50*10^{5}m/s}{1.6*10^{-19}C*0.5700T}\\ r_{1}=0.142m[/tex]
[tex]r_{2}=\frac{m_{c13}*v}{|q|B} \\r_{2}=\frac{2.159*10^{-26}kg*6.50*10^{5}m/s}{1.6*10^{-19}C*0.5700T}\\ r_{2}=0.154m[/tex]
So the spatial separation between two isotopes given as:
d=2r₂-2r₁
d=2(0.154)-2(0.142)
d=0.024m