Respuesta :
Answer:
-35 teeth
-3.25in
Explanation:
Given the spur pinion teeth, [tex]N_p=17[/tex] and a diametral pitch, [tex]P=8[/tex]. Also given that the pinion runs at 1120r/min spinning a gear at 540r/min, we can Find the number of teeth on the gear as:
[tex]d_p=N_p/P\\\\=17/8=2.125\\\\d_G=\frac{n_2}{n_3}\times d_P\\\\=\frac{1120}{544}\times2.125\\\\=4.375\\\\N_G=Pd_G\\\\=8\times4.375\\\\=35 \ teeth[/tex]
Hence the number of teeth in the gear is 35 teeth
# The theoretical center to- center distance is calculated as:
[tex]C=\frac{d_p+d_G}{2}\\\\=\frac{2.125+4.375}{2}\\\\=3.25 \ in[/tex]
The theoretical center to- center distance is 3.25 in
The driven gear has 35 teeth and the theoretical center-to-center distance is 3.25 inches.
First, we calculate the number of teeth on the driven gear by definition of speed ratio:
[tex]\frac{N_{D}}{N_{S}} = \frac{n_{S}}{n_{D}}[/tex] (1)
Where:
- [tex]N_{S}[/tex], [tex]N_{D}[/tex] - Number of teeth of the small gear and the driven gear, no unit.
- [tex]n_{S}[/tex], [tex]n_{D}[/tex] - Speed of the small gear and the driven gear, in revolutions per second.
If we know that [tex]N_{S} = 17[/tex], [tex]n_{S} = 1120\,\frac{rev}{min}[/tex] and [tex]n_{D} = 544\,\frac{rev}{min}[/tex], then the number of teeth of the driven gear is:
[tex]N_{D} = 17\cdot \left(\frac{1120\,\frac{rev}{min} }{544\,\frac{rev}{min} } \right)[/tex]
[tex]N_{D} = 35[/tex]
Now we find the diameters of both gears:
Small gear ([tex]D_{S}[/tex]) - Diameter of the small gear)
[tex]D_{S} = \frac{17}{8\,\frac{1}{in} }[/tex]
[tex]D_{S} = 2.125\,in[/tex]
Driven gear ([tex]D_{D}[/tex] - Diameter of the driven gear)
[tex]\frac{N_{D}}{N_{S}} = \frac{D_{D}}{D_{S}}[/tex]
[tex]D_{D} = D_{S}\cdot \left(\frac{N_{D}}{N_{S}} \right)[/tex]
[tex]D_{D} = \left(\frac{35}{17} \right)\cdot (2.125\,in)[/tex]
[tex]D_{D} = 4.375\,in[/tex]
Lastly, the theoretical center-to-center distance ([tex]d[/tex]), is modelled after this formula:
[tex]d = \frac{1}{2}\cdot (D_{D}+D_{S})[/tex] (2)
If we know that [tex]D_{P} = 2.125\,in[/tex] and [tex]D_{D} = 4.375\,in[/tex], then the theoretical center-to-center distance is:
[tex]d = \frac{1}{2}\cdot (2.125\,in + 4.375\,in)[/tex]
[tex]d = 3.25\,in[/tex]
The driven gear has 35 teeth and the theoretical center-to-center distance is 3.25 inches.
To learn more on gears, we kindly invite to check this verified question: https://brainly.com/question/15541463