Respuesta :
Answer:
[tex]T = 40.501\,^{\textdegree}C[/tex]
Explanation:
The interaction of the piece of copper and water means that the first one need to transfer heat in order to reach a thermal equilibrium with water. Then:
[tex]-Q_{out,Cu} = Q_{in,H_{2}O}[/tex]
After a quick substitution, the expanded expression is:
[tex]-(43.9\,g)\cdot (0.385\,\frac{J}{g\cdot ^{\textdegree}C} )\cdot (T-135^{\textdegree}C) = (254\,g)\cdot (4.187\,\frac{J}{g\cdot ^{\textdegree}C} )\cdot (T-39\,^{\textdegree}C)[/tex]
[tex]-16.902\,\frac{J}{^{\textdegree}C}\cdot (T-135^{\textdegree}C) = 1063.498\,\frac{J}{^{\textdegree}C} \cdot (T-39^{\textdegree}C)[/tex]
[tex]43758,192\,J = 1080.4\,\frac{J}{^{\textdegree}C}\cdot T[/tex]
The final temperature of the system is:
[tex]T = 40.501\,^{\textdegree}C[/tex]
Answer:
40.497 °C
Explanation:
Heat lost by copper = heat gained by water
CM(T₁-T₃) = cm(T₃-T₂)........................ Equation 1
Where C = specific heat capacity of copper, M = mass of copper, T₁ = Initial Temperature of copper, T₂ = Initial Temperature of water, T₃ = final temperature of the system,
Make T₃ the subject of the equation
T₃= (CMT₁+cmT₂)/(CM+cm)................. Equation 2
Given: C = 0.385 J/g°C, M = 43.9 g, c = 4.2 J/g°C, m = 254 g, T₁ = 135 °C, T₂ = 39 °C
Substitute into equation 2
T₃ = (0.385×43.9×135+4.2×254×39)/(0.385×43.9+4.2×254)
T₃ = (2281.70+41605.2)/(16.9015+1066.8)
T₃ = 43886.9/1083.7015
T₃ = 40.497 °C.
Hence the final temperature of the system = 40.497 °C