Respuesta :

Option D:

The expression equivalent to the given expression is 25.

Solution:

The image of the question is attached below.

Given expression:

[tex]$\left(\frac{125^{2}}{125^{\frac{4}{3}}}\right)[/tex]

To find which expression is equivalent to the given expression:

[tex]$\left(\frac{125^{2}}{125^{\frac{4}{3}}}\right)[/tex]

125 can be written as 5 × 5 × 5 = 5³

      [tex]$=\frac{(5^3)^{2}}{(5^3)^{\frac{4}{3}}}[/tex]

Using the exponent rule: [tex]\left(a^{m}\right)^{n}=a^{(m n)}[/tex]

     [tex]$=\frac{5^6}{5^{\frac{12}{3}}}[/tex]

     [tex]$=\frac{5^6}{5^4}[/tex]

Using the exponent rule: [tex]\frac{a^{m}}{a^{n}}=a^{m-n}[/tex]

      [tex]=5^{(6-4)}[/tex]

      = 5²

      = 25

[tex]$\left(\frac{125^{2}}{125^{\frac{4}{3}}}\right)=25[/tex]

The expression equivalent to the given expression is 25.

Option D is the correct answer.

Ver imagen shilpa85475