Respuesta :
Answer:
[tex]\large \boxed{109.17 \, ^{\circ}\text{C}}[/tex]
Explanation:
Data:
50/50 ethylene glycol (EG):water
V = 4.70 gal
ρ(EG) = 1.11 g/mL
ρ(water) = 0.988 g/mL
Calculations:
The formula for the boiling point elevation ΔTb is
[tex]\Delta T_{b} = iK_{b}b[/tex]
i is the van’t Hoff factor — the number of moles of particles you get from 1 mol of solute. For EG, i = 1.
1. Moles of EG
[tex]\rm n = 0.50 \times \text{4.70 gal} \times \dfrac{\text{3.785 L}}{\text{1 gal}} \times \dfrac{\text{1000 mL}}{\text{1 L}} \times \dfrac{\text{1.11 g}}{\text{1 mL}} \times \dfrac{\text{1 mol}}{\text{62.07 g}} = \text{159 mol}[/tex]
2. Kilograms of water
[tex]m = 0.50 \times \text{4.70 gal} \times \dfrac{\text{3.785 L}}{\text{1 gal}} \times \dfrac{\text{998 g}}{\text{1 L}} \times \dfrac{\text{1 kg}}{\text{1000 g}} = \text{8.88 kg}[/tex]
3. Molal concentration of EG
[tex]b = \dfrac{\text{159 mol}}{\text{8.88 kg}} = \text{17.9 mol/kg}[/tex]
4. Increase in boiling point
[tex]\rm \Delta T_{b} = iK_{b}b = 1 \times 0.512 \, \, ^{\circ}\text{C} \cdot kg \cdot mol^{-1} \, \times 17.9 \cdot mol \cdot kg^{-1} = 9.17 \, ^{\circ}\text{C}[/tex]
5. Boiling point
[tex]\rm T_{b} = T_{b}^{\circ} + \Delta T_{b} = 100.00 \, ^{\circ}\text{C} + 9.17 \, ^{\circ}\text{C} = \mathbf{109.17 \, ^{\circ}C}\\\rm \text{The boiling point of the solution is $\large \boxed{\mathbf{109.17 \, ^{\circ}C}}$}[/tex]