A 50/50 blend of engine coolant and water (by volume) is usually used in an automobile's engine cooling system. If a car's cooling system holds 4.70 gal, what is the boiling point of the solution? For the calculation, assume that at normal filling conditions, the densities of engine coolant and water are 1.11 g/mL and 0.998 g/mL respectively. Also, assume that the engine coolant is pure ethylene glycol ( HOCH 2 CH 2 OH ) , which is non‑ionizing and non‑volatile, and that the pressure remains constant at 1.00 atm. The boiling‑point elevation constant for water will also be needed.

Respuesta :

znk

Answer:

[tex]\large \boxed{109.17 \, ^{\circ}\text{C}}[/tex]

Explanation:

Data:

50/50 ethylene glycol (EG):water

V = 4.70 gal

ρ(EG) = 1.11 g/mL

ρ(water) = 0.988 g/mL

Calculations:

The formula for the boiling point elevation ΔTb is

[tex]\Delta T_{b} = iK_{b}b[/tex]

i is the van’t Hoff factor —  the number of moles of particles you get from 1 mol of solute. For EG, i = 1.

1. Moles of EG

[tex]\rm n = 0.50 \times \text{4.70 gal} \times \dfrac{\text{3.785 L}}{\text{1 gal}} \times \dfrac{\text{1000 mL}}{\text{1 L}} \times \dfrac{\text{1.11 g}}{\text{1 mL}} \times \dfrac{\text{1 mol}}{\text{62.07 g}} = \text{159 mol}[/tex]

2. Kilograms of water

[tex]m = 0.50 \times \text{4.70 gal} \times \dfrac{\text{3.785 L}}{\text{1 gal}} \times \dfrac{\text{998 g}}{\text{1 L}} \times \dfrac{\text{1 kg}}{\text{1000 g}} = \text{8.88 kg}[/tex]

3. Molal concentration of EG

[tex]b = \dfrac{\text{159 mol}}{\text{8.88 kg}} = \text{17.9 mol/kg}[/tex]

4. Increase in boiling point

[tex]\rm \Delta T_{b} = iK_{b}b = 1 \times 0.512 \, \, ^{\circ}\text{C} \cdot kg \cdot mol^{-1} \, \times 17.9 \cdot mol \cdot kg^{-1} = 9.17 \, ^{\circ}\text{C}[/tex]

5. Boiling point

[tex]\rm T_{b} = T_{b}^{\circ} + \Delta T_{b} = 100.00 \, ^{\circ}\text{C} + 9.17 \, ^{\circ}\text{C} = \mathbf{109.17 \, ^{\circ}C}\\\rm \text{The boiling point of the solution is $\large \boxed{\mathbf{109.17 \, ^{\circ}C}}$}[/tex]