Respuesta :

Answer:

c = [tex]\sqrt{117}[/tex]

Step-by-step explanation:

Using Pythagoras' identity in the right triangle.

The square on the hypotenuse is equal to the sum of the squares on the other 2 sides, that is

c² = 9² + 6² = 81 + 36 = 117 ( take the square root of both sides )

c = [tex]\sqrt{117}[/tex] ≈ 10.8 ( to 1 dec. place )

Answer:

c = [tex]3\sqrt{13}[/tex]

Step-by-step explanation:

Step 1:  Use Pythagorean theorem

a^2 + b^2 = c^2

PLUG IN

(9)^2 + (6)^2 = c^2

81 + 36 = c^2

117 = c^2

Step 2:  Square root both sides

[tex]\sqrt{117}[/tex] = [tex]\sqrt{c^2}[/tex]

[tex]\sqrt{3^2*13}[/tex] = c

[tex]3\sqrt{13}[/tex] = c

Answer: c = [tex]3\sqrt{13}[/tex]