Respuesta :
Answer:
all but the second option
Step-by-step explanation:
all of them except the second one
In the segments joining the points that define a rectangle are; Opposite
segments are equal and adjacent segments are perpendicular.
Responses:
The rectangles are;
- A(-3, 0), B(3, 2), C(4, -1), D(-2, -3)
- A(-1, -1), B(2, 3), C(10, -3), D(7, -7)
- A(-3, -4), B(-1, 2), C(2, 1), D(0, -5)
How can the points that define a rectangle be found?
A rectangle is a quadrilateral that have opposite sides equal and
adjacent sides perpendicular.
Therefore;
First option, we have;
Length of AB = √((3 - (-3))² + (2 - 0)²) = 2·√10
Length of BC = √((3 - 4)² + (2 - (-1))²) = √10
Length of CD = √((4 - (-2))² + (-1 - (-3))²) = 2·√10
Length of DA = √((-3 - (-2))² + (0 - (-3))²) = √10
Slope of side AB = [tex]\dfrac{2}{6}[/tex] = [tex]\dfrac{1}{3}[/tex]
Slope of side BC = [tex]\dfrac{3}{-1}[/tex] = -3
Slope of side CD = [tex]\dfrac{2}{6}[/tex] = [tex]\mathbf{\dfrac{1}{3}}[/tex]
Slope of side DA = [tex]\dfrac{3}{-1}[/tex] = -3
The length of the opposite sides are equal.
The slope of the adjacent sides are the negative inverse of each other, therefore, the adjacent sides are perpendicular.
- The quadrilateral [tex]\underline{A(-3, \, 0), B(3, \, 2), C(4, \, -1), D(-2, \, -3)}[/tex] is a rectangle.
Second option, we have;
Length of AB = √(0)² + (-6)²) = 6
Length of BC = √(5² + 1²) = √(26)
Length of CD = √((2)² + (2 - (-4))²) = 2·√10
The opposite sides of the quadrilateral in the second option are not equal
Third option, we have;
Length of AB = √(3² + 4²) = 5
Length of BC = √((10 - 2)² + (-3 - 3)²) = 10
Length of CD = √(3² + 4²) = 5
Length of DA = √((7 - (-1))² + (-7 - (-1))²) = 10
Slope of side AB = [tex]\mathbf{\dfrac{4}{3}}[/tex]
Slope of side BC = [tex]\dfrac{-6}{8} = \mathbf{-\dfrac{3}{4}}[/tex]
Slope of side CD = [tex]\dfrac{-4}{-3} = \dfrac{4}{3}[/tex]
Slope of side DA = [tex]\dfrac{-6}{8} = -\dfrac{3}{4}[/tex]
The length of the opposite sides are equal.
The slope of the adjacent sides are the negative inverse of each other,
therefore, the adjacent sides are perpendicular.
- The quadrilateral [tex]\underline{A(-1, \, -1), B(2, \, 3), C(10, \, -3), D(7, \, -7)}[/tex] is a rectangle.
Fourth option, we have;
Length of AB = √(2² + 6²) = 2·√10
Length of BC = √(3² + (-1)²) = √10
Length of CD = √(2² + 6²) = 2·√10
Length of DA = √((0 - (-3))² + (-5 - (-4))²) = √10
Slope of side AB = [tex]\dfrac{6}{2}[/tex] = 3
Slope of side BC = [tex]\dfrac{1}{-3} = \mathbf{-\dfrac{1}{3}}[/tex]
Slope of side CD = [tex]\dfrac{6}{2}[/tex] = 3
Slope of side DA = [tex]\dfrac{1}{-3} = -\dfrac{1}{3}[/tex]
The length of the opposite sides are equal.
The slope of the adjacent sides are the negative inverse of each other, therefore, the adjacent sides are perpendicular.
- The quadrilateral, [tex]\underline{A(-3, \, -4), B(-1, \, 2), C(2, \, 1), D(0, \, -5)}[/tex] is a rectangle
Learn more about rectangle here:
https://brainly.com/question/18019422