Respuesta :
cos(12x) = cos(6x+6x) = cos6xcos6x -sin6xsin6x = cos^2(6x) -sin^2(6x)
1 - cos(12x) = 1 - (cos^2(6x) -sin^2(6x)) = sin^2(6x) +cos^2(6x) - cos^2(6x) +sin^2(6x) = 2sin^2(6x)
so choice A. is right sure
1 - cos(12x) = 1 - (cos^2(6x) -sin^2(6x)) = sin^2(6x) +cos^2(6x) - cos^2(6x) +sin^2(6x) = 2sin^2(6x)
so choice A. is right sure
Answer: The correct option is (A). 2sin²(6x).
Step-by-step explanation: We are given the value of the following trigonometric expression:
[tex]T_e=1-\cos(12x).[/tex]
We will be using the following trigonometric identity:
[tex]1-\cos x=2\sin^2\dfrac{x}{2}.[/tex]
So, we have, using the above identity that
[tex]T_e\\\\=1-\cos(12x)\\\\=2\sin^2\left(\dfrac{12x}{2}\right)\\\\=2\sin^2(6x).[/tex]
Therefore, the value of 1-cos(12x) is 2sin²(6x).
Thus, (A) is the correct option.