Respuesta :

Given:

Image of the ellipse

To find:

The equation of the image

Solution:

The given image is a ellipse.

Center of the ellipse = (0, 0)

x-axis points are (-3, 0) and (3, 0).

y-axis points are (2, 0) and (-2, 0).

Standard form of equation of ellipse:

[tex]$\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1[/tex]

where (h, k) is the center = (0,0)

a is the point on x-axis where y = 0. Hence a = 3.

b is the point on y-axis where x = 0. Hence b = 2.

Substitute this in the standard form of ellipse.

[tex]$\frac{(x-0)^{2}}{3^{2}}+\frac{(y-0)^{2}}{2^{2}}=1[/tex]

[tex]$\frac{x^{2}}{9}+\frac{y^{2}}{4}=1[/tex]

To make the denominator same multiply 1st term by [tex]\frac{4}{4}[/tex] and 2nd term by [tex]\frac{9}{9}[/tex].

[tex]$\frac{4x^{2}}{4\times9}+\frac{9y^{2}}{9\times4}=1[/tex]

[tex]$\frac{4x^{2}}{36}+\frac{9y^{2}}{36}=1[/tex]

[tex]$\frac{4x^{2}+9y^{2}}{36}=1[/tex]

Multiply by 36 on both sides

[tex]$\frac{4x^{2}+9y^{2}}{36}\times 36=1\times 36[/tex]

[tex]${4x^{2}+9y^{2}}={36}[/tex]

The equation of the image is [tex]${4x^{2}+9y^{2}}={36}[/tex].