Given:
The height of the bird at time t is given by the function [tex]h(t)=-4.9t^2+6t+50[/tex]
We need to determine the time it takes the worm to be eaten by the bird.
Time taken:
The time can be determined by substituting h(t) = 0 in the function.
Thus, we have;
[tex]0=-4.9t^2+6t+50[/tex]
Switch sides, we get;
[tex]-4.9t^2+6t+50=0[/tex]
Let us solve the equation using the quadratic formula.
Thus, we get;
[tex]t=\frac{-6 \pm \sqrt{6^{2}-4(-4.9) 50}}{2(-4.9)}[/tex]
Simplifying, we get;
[tex]t=\frac{-6 \pm \sqrt{36+980}}{-9.8}[/tex]
[tex]t=\frac{-6 \pm \sqrt{1016}}{-9.8}[/tex]
[tex]t=\frac{-6 \pm 31.87}{-9.8}[/tex]
The values of t are given by
[tex]t=\frac{-6 + 31.87}{-9.8}[/tex] and [tex]t=\frac{-6 - 31.87}{-9.8}[/tex]
[tex]t=\frac{25.87}{-9.8}[/tex] and [tex]t=\frac{-37.87}{-9.8}[/tex]
[tex]t=-2.4[/tex] and [tex]t=3.9[/tex]
Since, the value of t cannot be negative, then [tex]t=3.9[/tex]
Thus, the time taken by the bird to eat the worm is [tex]t=3.9[/tex] seconds.
Hence, Option B is the correct answer.