Respuesta :

Given:

Regular polygon.

Side length = 18 in

To find:

The area of the regular polygon.

Solution:

Let us first find the apothem (length from center to side).

Apothem formula:

[tex]$a=\frac{s}{2 \tan \left(\frac{180^\circ}{n}\right)}[/tex]

where s is side length and n is number of sides.

number of sides (n) = 6

[tex]$a=\frac{18}{2 \tan \left(\frac{180^\circ}{6}\right)}[/tex]

[tex]$a=\frac{9}{\tan (30^\circ)}[/tex]

The value of [tex]\tan \left(30^{\circ}\right)=\frac{\sqrt{3}}{3}[/tex]

[tex]$a=\frac{9}{\frac{\sqrt{3}}{3}}[/tex]

[tex]a=9 \sqrt{3}[/tex] in

Area of regular polygon:

[tex]$A=\frac{1}{2} \times p \times a[/tex]

where p is perimeter of polygon and a is apothem.

[tex]$A=\frac{1}{2} \times (6\times 18) \times 9\sqrt{3}[/tex]

[tex]$A=54 \times 9\sqrt{3}[/tex]

[tex]$A=841.78[/tex] square inches.

The area of the regular polygon is 841.78 square inches.