Select the three measurements that could be side lengths that form a right triangle
7cm
11cm
54 cm
60 cm
61 cm
65 cm

Respuesta :

The side lengths of a right triangle is 11cm, 60cm and 61cm, that could be selected from the given measurements.

Step-by-step explanation:

The measurements are,

                   7cm, 11cm, 54cm, 60cm, 61cm, 65cm

Step:1

                  To check the right angle triangle, Pythagorean theorem can be used.

                 For a Pythagorean theorem,

                                      [tex]Side^{2} + Side^{2} = Hypotenuse^{2}[/tex]..........................(1)

                The side values are lower than the hypotenuse,

                                                         [tex]c=\sqrt{a^{2}+b^{2} }[/tex]...................................(2)

                Where,

                          a,b - side values

                             c - Hypotenuse

                For right angle triangle,  c > a, b

                Alternative : 1

                Take, a = 7cm, b = 11cm

                From eqn (2),

                                                   [tex]c = \sqrt{7^{2}+11^{2} }[/tex] = [tex]\sqrt{170}[/tex] = 13.04

               The above value is not equal to the any one of the values of ( 54cm. 60cm, 61cm, 65cm ), So its not an sides of right triangle.

                Alternative : 2

                Take, a = 7cm, b = 54cm

                From eqn (2),

                                                   [tex]c = \sqrt{7^{2}+54^{2} }[/tex] = [tex]\sqrt{2965}[/tex] = 54.45

               The above value is not equal to the any one of the values of (60cm, 61cm, 65cm ), So its not an sides of right triangle.

                Alternative : 3

                Take, a = 7cm, b = 60cm

                From eqn (2),

                                                   [tex]c = \sqrt{7^{2}+60^{2} }[/tex] = [tex]\sqrt{3649}[/tex] = 60.406

               The above value is not equal to the any one of the values of (61cm, 65cm ), So its not an sides of right triangle.

                Alternative : 4

                Take, a = 7cm, b = 61cm

                From eqn (2),

                                                   [tex]c = \sqrt{7^{2}+61^{2} }[/tex] = [tex]\sqrt{3770}[/tex] = 61.40

               The above value is not equal to the values of (65cm ), So its not an sides of right triangle.

                  Alternative : 5

                Take, a = 11cm, b = 54cm

                From eqn (2),

                                                   [tex]c = \sqrt{11^{2}+54^{2} }[/tex] = [tex]\sqrt{3037}[/tex] = 55.1089

               The above value is not equal to the any one of the values of (60cm, 61cm, 65cm ), So its not an sides of right triangle.      

                 Alternative : 6

                Take, a = 11cm, b = 60cm

                From eqn (2),

                                                  [tex]c = \sqrt{11^{2}+60^{2} }[/tex] = [tex]\sqrt{3721}[/tex] = 61

               The above value is equal to the values of (61cm ), So its an sides of right triangle. The three sides are 11, 60 and 61.

Step:2

             Check for solution,

                                     [tex]11^{2} + 60^{2} = 61^{2}[/tex]

                                            [tex]3721=3721[/tex]

Result:

             The side lengths of a right triangle is 11cm, 60cm and 61cm, that could be selected from the given measurements.