Step-by-step explanation:
Since, y varies inversely as x.
[tex] \therefore \: y = \frac{k}{x} \\ (k = constant \: of \: proportionality) \\ \therefore \: xy = k...(1) \\ plug \: y = 194 \: \: and \: \: x = - 13 \: in \: (1) \\ \therefore \: - 13 \times 194= k \\ \therefore \: k = - 2522 \\ substituting \: k = - 2522 \: in \: (1) \\ xy = - 2522...(2) \\ this \: is \: equation \: of \: variation. \\ plug \: x = 50 \: in \: (2) \\ 50 \times y = - 2522 \\ \therefore \:y = \frac{ - 2522}{50} \\ \huge \red{ \boxed{\therefore \:y = - 50.44}}[/tex]