Respuesta :

Given:

[tex]$\frac{\left(\frac{(4 r)^{3}}{15 t^{4}}\right)}{\left(\frac{16 r}{(3 t)^{2}}\right)}[/tex]

To find:

The simplified fraction.

Solution:

Step 1: Simplify the numerator

[tex]$\frac{(4 r)^{3}}{15 t^{4}}=\frac{4^3 r^{3}}{15 t^{4}}=\frac{64 r^{3}}{15 t^{4}}[/tex]

Step 2: Simplify the denominator

[tex]$\frac{16 r}{(3 t)^{2}}=\frac{16 r}{3^2 t^{2}}= \frac{16 r}{9 t^{2}}[/tex]

Step 3: Using step 1 and step 2

[tex]$\frac{\left(\frac{(4 r)^{3}}{15 t^{4}}\right)}{\left(\frac{16 r}{(3 t)^{2}}\right)}=\frac{\left(\frac{64 r^{3}}{15 t^{4}}\right)}{\left(\frac{16 r}{9 t^{2}} \right)}[/tex]

Step 4: Using fraction rule:

[tex]$\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a \cdot d}{b \cdot c}[/tex]

[tex]$\frac{\left(\frac{64 r^{3}}{15 t^{4}}\right)}{\left(\frac{16 r}{9 t^{2}}\right)}=\frac{64r^3 \cdot 9t^2}{16 r \cdot 15 t^4}[/tex]

Cancel the common factor r and t², we get

           [tex]$=\frac{64 r^{2} \cdot 9 }{16 \cdot 15 t^2 }[/tex]

Cancel the common factors 16 and 3 on both numerator and denominator.

           [tex]$=\frac{4 r^{2} \cdot 3 }{ 5 t^2 }[/tex]

           [tex]$=\frac{12 r^{2} }{ 5 t^2 }[/tex]

[tex]$\frac{\left(\frac{(4 r)^{3}}{15 t^{4}}\right)}{\left(\frac{16 r}{(3 t)^{2}}\right)}=\frac{12 r^{2} }{ 5 t^2 }[/tex]

The simplified fraction is [tex]\frac{12 r^{2} }{ 5 t^2 }[/tex].