Respuesta :

Given:

A(16, 4)

B(34, 40)

Line segment AB partition in the ratio 1 : 5.

To find:

The coordinate of a point that partitions AB.

Solution:

Section formula:

[tex]$P(x,y)=\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+m y_{1}}{m+n}\right)[/tex]

Here [tex]x_1=16, y_1=4, x_2=34, y_2=40[/tex] and m = 1, n = 5

[tex]$P(x,y)=\left(\frac{1\times 34+5 \times 16}{1+5}, \frac{1\times 40+5 \times4}{1+5}\right)[/tex]

[tex]$P(x,y)=\left(\frac{ 34+80}{6}, \frac{40+20}{6}\right)[/tex]

[tex]$P(x,y)=\left(\frac{ 114}{6}, \frac{60}{6}\right)[/tex]

[tex]$P(x,y)=(19, 10)[/tex]

The coordinate of point that partitions the segment AB is (19, 10).