Assume the random variable x is normally distributed with mean u = 90 and standard deviation o=5. Find the indicated probability.
P(X<80) =
(Round to four decimal places as needed.)

Respuesta :

Given:

Let the random variable x is normally distributed with mean [tex]\mu=90[/tex] and [tex]\sigma=5[/tex]

We need to determine the probability of [tex]P(X<80)[/tex]

Probability of [tex]P(X<80)[/tex]:

The formula to determine the value of [tex]P(X<80)[/tex] is given by

[tex]Z=\frac{X-\mu}{\sigma}[/tex]

Thus, we have;

[tex]P(X<80)=P(Z<\frac{80-90}{5})[/tex]

Simplifying, we get;

[tex]P(X<80)=P(Z<\frac{-10}{5})[/tex]

[tex]P(X<80)=P(Z<-2)[/tex]

Using the normal distribution table, the value of -2 is given by 0.0228

[tex]P(X<80)=0.0228[/tex]

Thus, the value of [tex]P(X<80)[/tex] is 0.0228