The distribution of weights of potato chip bags filled off a production line is unknown. However, the mean is m=13.35 OZs and the standard deviation is s=.1200 OZs. To check the quality of the potato chip bags, a random sample of n=36 bags is selected. Use `X to denote the sample mean.

1. The mean (or expected value) of the sample mean `X is:______

a. 13.23
b. 13.00
c. 13.47
d. 13.50

2. The standard deviation of the sample mean `X is

a. 0.0200
b. 0.1200
c. 0.0600
d. 0.3600
e. none of the above

3. The probability that the sample mean `X is less than or equal to 13.38 OZs is closest to

a. 0.0668
b. 0.0998
c. 0.4332
d. 0.9332
e. none of the above

4. The probability that the sample mean `X is less than or equal to 13.32 OZs is closest to

a. 0.0668
b. 0.0998
c. 0.4332
d. 0.9332
e. none of the above

5. The probability that the sample mean `X is between 13.30 and 13.36 OZs is closest to

a. 0.0062
b. 0.3085
c. 0.6853
d. 0.4938
e. none of the above

Respuesta :

Answer:

(1) The mean (or expected value) of the sample mean `X = 13.35

(2) The standard deviation of the sample mean `X  = .02

(3) The probability that the sample mean `X is less than or equal to 13.38 OZ = .9332

(4) The probability that the sample mean `X is less than or equal to 13.32 OZ = .0668

(5) The probability that the sample mean `X is between 13.30 and 13.36 OZ = .6853

Step-by-step explanation:

mean [tex](\nu)[/tex]  =13.35

Standard deviation [tex](\sigma )[/tex]  = .1200

n  = 36

The mean (or expected value) of the sample mean `X

[tex]E(\overline{X}) = \nu _{\overline{X}} = \nu[/tex] = 13.35

The standard deviation of the sample mean `X =

[tex]\sigma _{\overline{X}} = \frac{\sigma}{\sqrt{n}}[/tex]   =  [tex]\frac{.1200}{\sqrt{36}}[/tex] =  .02

The probability that the sample mean `X is less than or equal to 13.38 OZ=

[tex]P(\overline{X} \leq 13.38 )[/tex] = [tex]P(\frac{\overline{X} - \nu }{\frac{\sigma}{\sqrt{n}}}\leq \frac{13.38 - 13.35 }{\frac{.1200}{\sqrt{36}}})[/tex]    [  Z = [tex]\frac{\overline{X} - \nu }{\frac{\sigma}{\sqrt{n}}}[/tex] ]

                      = [tex]P(Z\leq 1.5)[/tex]      Using Z table

                       =  .9332

. The probability that the sample mean `X is less than or equal to 13.32 OZ =

[tex]P(\overline{X} \leq 13.32)[/tex] = [tex]P(\frac{\overline{X} - \nu }{\frac{\sigma}{\sqrt{n}}}\leq \frac{13.32 - 13.35 }{\frac{.1200}{\sqrt{36}}})[/tex]

                      =  [tex]P(Z\leq -1.5)[/tex]

                       =  .0668

The probability that the sample mean `X is between 13.30 and 13.36 OZ =

[tex]P(13.30\leq \overline{X} \leq 13.36)[/tex] = [tex]P(\frac{13.30 - 13.35 }{\frac{.1200}{\sqrt{36}}})\leq \frac{\overline{X} - \nu }{\frac{\sigma}{\sqrt{n}}}\leq \frac{13.36 - 13.35 }{\frac{.1200}{\sqrt{36}}})[/tex]

                                   = [tex]P(- 2.5\leq Z\leq 0.5)[/tex]

                                    = .6915 - .0062

                                    = .6853