a. Find the linear approximating polynomial for the following function centered at the given point a. b. Find the quadratic approximating polynomial for the following function centeredat the given point a. c. Use the polynomials obtained in parts a. and b. to approximate the given quantity.

f(x)=1/x, a=1; approximate 1/0.97

Respuesta :

Answer:

a. p1(x) = 2 - x

b. p2(x) = x² - 3*x + 3

c. p1(0.97) = 1.03; p2(0.97) = 1.0309

Step-by-step explanation:

f(x) = 1/x

f'(x) =  -1/x²

f''(x) = 2/x³

a = 1

a. The linear approximating polynomial is:

p1(x) = f(a) + f'(a)*(x - a)

p1(x) = 1/1 + -1/1² * (x - 1)

p1(x) = 1 - x + 1

p1(x) = 2 - x

b. The quadratic approximating polynomial is:

p2(x) = p1(x) + 1/2 * f''(a)*(x - a)²

p2(x) = 2 - x + 1/2 * 2/1³ * (x - 1)²

p2(x) = 2 - x + (x - 1)²

p2(x) = 2 - x + x² - 2*x + 1

p2(x) = x² - 3*x + 3

c. approximate 1/0.97 using p1(x)

p1(0.97) = 2 - 0.97 = 1.03

approximate 1/0.97 using p2(x)

p2(0.97) = 0.97² - 3*0.97 + 3 = 1.0309