Respuesta :
Answer:
Part (a)
[tex]x_{cm}=\frac{m_{1}d_{1}+m_{2}(d_{1}+d_{2})+m_{3}(d_{1}+d_{2}+d_{3} ) }{m_{1}+m_{2}+m_{3} }[/tex]
Part (b)
x = 4.48 cm
Part (c)
[tex]x_{cm}=\frac{-m_{1}d_{2}+m_{3}d_{3} }{m_{1}+m_{2}+m_{3} }[/tex]
d) x = 1.48 cm
Explanation:
Given that
First bead
mass , m₁ = 23g
d₁ = 1.1 cm
Second bead
mass, m₂ = 15 g
d₂ = 1.9 cm
Third bead
mass, m₃ = 58 g
d₃ = 3.2 cm
Part (a)
equation for the location of the center of mass of the three beads is
[tex]x_{cm}=\frac{m_{1}x_{1}+m_{2}x_{2}+m_{3}x_{3} }{m_{1}+m_{2} +m_{3}}[/tex]
[tex]x_{cm}=\frac{m_{1}x_{1}+m_{2}x_{2}+m_{3}x_{3} }{m_{1}+m_{2} +m_{3}}\\\\x_{cm}=\frac{m_{1}d_{1}+m_{2}(d_{1}+d_{2})+m_{3}(d_{1}+d_{2}+d_{3} ) }{m_{1}+m_{2}+m_{3} }[/tex]
Part (b)
the center of mass is
[tex]x_{cm}=\frac{23g*1.1cm+15g*(1.1cm+1.9cm)+58g(1.1cm+1.9cm+3.2cm) }{23g+15g+58g } \\\\x_{cm}= \frac{25.3+45+359.6}{96} \\\\x_{cm}=\frac{429.9}{96}\\\\x_{cm}=4.48cm[/tex]
Part (c)
the location of the center of mass of the three beads is
[tex]x_{cm}=\frac{m_{1}x_{1}+m_{2}x_{2}+m_{3}x_{3} }{m_{1}+m_{2} +m_{3}}[/tex]
[tex]x_{cm}=\frac{m_{1}-d_{2}+m_{2}(0)+m_{3}d_{3} }{m_{1}+m_{2} +m_{3}}\\\\x_{cm}=\frac{-m_{1}d_{2}+m_{3}d_{3} }{m_{1}+m_{2} +m_{3}}[/tex]
Part (d)
the center of mass is
[tex]x_{cm}=\frac{-(23g)(1.9cm)+(58g)(3.2cm) }{23g+15g+58g} \\\\ x_{cm} = \frac{-43.7+185.6}{96} \\\\ x_{cm}=\frac{141.9}{96} \\\\ x_{cm}=1.48cm[/tex]
The center of mass is the location relative to which the sum of the
distances of a distributed system of masses is zero.
The correct responses are;
- [tex]a. \ x_{cm} = \dfrac{m_1 \times d_1 + m_2 \times (d_1 + d_2) + m_3 \times (d_1 + d_2 + d_3)}{m_1 + m_2 + m_3}[/tex]
- b. The center of mass is 4.478125 cm from the left end.
- [tex]c. \ The \ symbolic \ equation \ for \ the \ center \ of \ mass \ is \ x_{cmcb} = \dfrac{ m_3 \times d_3- m_1 \times d_2 }{m_1 + m_2 + m_3}[/tex]
- d. [tex]x_{cmcb}[/tex] = 1.478125 cm
Reasons:
a. The center of mass of the three beads relative to the left of the rod, [tex]x_{cm}[/tex],
is given using the formula for center of mass as follows;
[tex]x_{cm} = \dfrac{m_1 \times d_1 + m_2 \times (d_1 + d_2) + m_3 \times (d_1 + d_2 + d_3)}{m_1 + m_2 + m_3}[/tex]
b. Given that we have;
m₁ = 23 g, m₂ = 15 g, m₃ = 58 g, d₁ = 1.1 cm, d₂ = 1.2, d₃ = 3.2 cm
Therefore;
[tex]x_{cm} = \dfrac{23 \times 1.1 + 15 \times (1.1 + 1.9) + 58 \times (1.1 + 1.9 +3.2)}{23 + 15 + 58} = \dfrac{1433}{320} = 4.478125[/tex]
[tex]x_{cm}[/tex] = 4.478125 cm from the left end
c. The center of mass of the beads with measurements taken relative to the
center bead, [tex]x_{cmcb}[/tex] is presented as follows;
[tex]x_{cmcb} = \dfrac{m_1 \times (-d_2) + m_2 \times (0) + m_3 \times d_3}{m_1 + m_2 + m_3} = \dfrac{ m_3 \times d_3- m_1 \times d_2 }{m_1 + m_2 + m_3}[/tex]
d. The center of mass relative to the middle bead is therefore;
[tex]x_{cmcb} = \dfrac{ 58 \times 3.2- 23 \times 1.9 }{23 + 15 + 58} = 1.478125[/tex]
[tex]x_{cmcb}[/tex] = 1.478125 cm
Learn more here:
https://brainly.com/question/21959097
