Respuesta :
Answer:
q = 1.11 lb
[tex]\triangle \sigma _v = 1.66 \times 10^{-5}[/tex] psf
[tex]\triangle \sigma _v = 1.66 \times 10^{-5}[/tex] psf
[tex]\triangle \sigma _v = 1.66 \times 10^{-5}[/tex] psf
Explanation:
given data
uniform stress = 2000 psf
area = 30 ft by 60 ft
solution
we get here surface load uniform homogenous soil is express as
q = [tex]\frac{Q}{A}[/tex] ................1
q = [tex]\frac{2000}{30\times 60}[/tex]
q = 1.11 lb
and
now we apply here boussin vertical stress that is at depth 10 ft
[tex]\triangle \sigma _v[/tex] = [tex]\frac{q}{z^2} \times \frac{3}{2\pi (1+(\frac{d}{z})^2)^{5/2}}[/tex] ................2
[tex]\triangle \sigma _v = \frac{1.1}{10^2} \times \frac{3}{2\pi (1+(\frac{30}{10})^2)^{5/2}}[/tex]
[tex]\triangle \sigma _v = 1.66 \times 10^{-5}[/tex] psf
and
depth at 20 ft will be put value in equation 2
[tex]\triangle \sigma _v = \frac{1.1}{20^2} \times \frac{3}{2\pi (1+(\frac{0}{20})^2)^{5/2}}[/tex]
[tex]\triangle \sigma _v = 1.31 \times 10^{-3}[/tex] psf
and
at depth at 30 ft
depth at 20 ft will be put value in equation 2
[tex]\triangle \sigma _v = \frac{1.1}{30^2} \times \frac{3}{2\pi (1+(\frac{30+10}{30})^2)^{5/2}}[/tex]
[tex]\triangle \sigma _v = 4.53 \times 10^{-5}[/tex] psf