Respuesta :
Answer with Explanation:
We are given that
[tex]n_g=1.55[/tex]
[tex]n_f=1.35[/tex]
[tex]\lambda=521 nm=521\times 10^{-9} m[/tex]
[tex]1 nm=10^{-9} m[/tex]
a.We have to find the expression for the minimum thickness the film can have ,t.
Condition for destructive interference
[tex]2nt=(m+\frac{1}{2})\lambda[/tex]
[tex]t=\frac{(m+\frac{1}{2})\lambda}{2n}[/tex]
For minimum thickness m=0
Then, [tex]t=\frac{\lambda}{4n}[/tex]
b.Substitute the values
[tex]t=\frac{521\times 10^{-9}}{4\times 1.35}=96.5nm[/tex]
(a) The expression for minimum thickness is "[tex]2n_f t = (\frac{1}{2} )\lambda[/tex]".
(b) The minimum thickness is "97.8 nm"
Given:
- ng = 1.55
- nf = 1.35
- λ = 521 nm
According to the question,
The optical path difference will be:
→ [tex]2n_ft[/tex]
The condition for destructive interference of reflected light will be:
→ [tex]2n_ft = (m+\frac{1}{2} )\lambda[/tex]
For minimum thickness,
- m = 1
then,
→ [tex]2n_ft = (\frac{1}{2} )\lambda[/tex]
hence,
The minimum thickness will be:
→ [tex]t = \frac{\lambda}{4nf}[/tex]
By putting the values, we get
[tex]= \frac{528}{4\times 1.35}[/tex]
[tex]= \frac{528}{5.4}[/tex]
[tex]= 97.8 \ nm[/tex]
Thus the responses above is right.
Learn more about reflection here:
https://brainly.com/question/14275936