Respuesta :

Answer:

[tex]A=\frac{1}{2}[/tex]

Step-by-step explanation:

The area of sector of a circle (in radians) is:

[tex]A=\frac{1}{2}r^2 \theta[/tex]

Where

r is the radius

[tex]\theta[/tex]  is the angle of the sector

We know the angle but we need the radius.

We are given the total circle's area is [tex]9\pi[/tex], putting in area of circle formula, we find the radius:

[tex]\pi r^2=9\pi\\r^2=9\\r=3[/tex]

Now, using the values, we find the area of the sector:

[tex]A=\frac{1}{2}r^2 \theta\\A=\frac{1}{2}(3)^2 (\frac{1}{9})\\A=\frac{1}{2}*9*(\frac{1}{9})\\A=\frac{1}{2}[/tex]

Area of sector is [tex]\frac{1}{2}[/tex]