Respuesta :

Answer:

[tex]m\angle LKM=36^o[/tex]

Step-by-step explanation:

The picture of the question in the attached figure

step 1

Find the measure of arc KN

we know that

The inscribed angle is half that of the arc comprising

so

[tex]m\angle M=\frac{1}{2}(arc\ KN)[/tex]

we have

[tex]m\angle M=48^o[/tex]

substitute

[tex]48^o=\frac{1}{2}(arc\ KN)[/tex]

[tex]arc\ KN=96^o[/tex]

step 2

Find the measure of arc LM

we know that

[tex]arc\ KN=arc\ MN=arc\ KL=96^o[/tex]

so

[tex]3arc\ KN+arc\ LM=360^o[/tex] ----> by complete circle

substitute given value

[tex]3(96^o)+arc\ LM=360^o[/tex]

[tex]arc\ LM=360^o-288^o=72^o[/tex]

step 3

Find the measure of angle LKM

we know that

The inscribed angle is half that of the arc comprising

so

[tex]m\angle LKM=\frac{1}{2}(arc\ LM)[/tex]

substitute the given value

[tex]m\angle LKM=\frac{1}{2}(72^o)=36^o[/tex]

Ver imagen calculista