Respuesta :

Answer:

16

Step-by-step explanation:

We are given [tex]x+y=4[/tex].

If we square both sides we obtain [tex](x+y)^2=16[/tex].

Recall [tex](x+y)^2=x^2+2xy+y^2[/tex].

So we have [tex]x^2+2xy+y^2=16[/tex].

Reorder this so we can use the second given: [tex]x^2+y^2=8[/tex].

[tex]x^2+y^2+2xy=16[/tex]

[tex]8+2xy=16[/tex]

Subtract 8 on both sides:

[tex]2xy=8[/tex]

Divide both sides by 2:

[tex]xy=4[/tex]

So we have the following so far:

[tex]x+y=4[/tex]

[tex]xy=4[/tex]

[tex]x^2+y^2=8[/tex]

We are asked to find [tex]x^3+y^3[/tex].

We will now cube both sides of the first given:

[tex]x+y=4[/tex]

[tex](x+y)^3=64[/tex]

Expand left hand side:

[tex]x^3+3x^2y+3xy^2+y^3=64[/tex]

Factor and reorder:

[tex]x^3+y^3+3xy(x+y)=64[/tex]

Plug in values given and the value we found for [tex]xy[/tex]:

[tex]x^3+y^3+3(4)(4)=64[/tex]

Simplify third term of left hand side:

[tex]x^3+y^3+48=64[/tex]

Subtract 48 on both  sides:

[tex]x^3+y^3=16[/tex]