Which logarithmic equation has the same solution as x minus 4 = 2 cubed
log 3 squared = (x minus 4)
log 2 cubed = (x minus 4)
log Subscript 2 Baseline (x minus 4) = 3
log Subscript 3 Baseline (x minus 4) = 2

(look at the picture below)

Which logarithmic equation has the same solution as x minus 4 2 cubed log 3 squared x minus 4 log 2 cubed x minus 4 log Subscript 2 Baseline x minus 4 3 log Sub class=

Respuesta :

Given:

The given equation is [tex]x-4=2^{3}[/tex]

Solving the equation [tex]x-4=2^{3}[/tex], we get;

[tex]x-4=8[/tex]

     [tex]x=12[/tex]

We need to determine the logarithmic equation that is equivalent to the given equation.

Option A: [tex]\log 3^{2}=(x-4)[/tex]

Simplifying, we get;

     [tex]\log 9=x-4[/tex]

[tex]\log 9+4=x[/tex]

      [tex]4.95=x[/tex]

Since, the values of x are not equivalent, the equation [tex]\log 3^{2}=(x-4)[/tex] is not equivalent to [tex]x-4=2^{3}[/tex]

Option A is not the correct answer.

Option B: [tex]\log 2^{3}=x-4[/tex]

Simplifying, we get;

     [tex]\log 8=x-4[/tex]

[tex]\log 8+4=x[/tex]

        [tex]4.9=x[/tex]

Since, the values of x are not equivalent, the equation [tex]\log 2^{3}=x-4[/tex] is not equivalent to [tex]x-4=2^{3}[/tex]

Option B is not the correct answer.

Option C: [tex]\log _{2}(x-4)=3[/tex]

Simplifying, we get;

[tex]x-4=2^{3}[/tex]

[tex]x-4=8[/tex]

     [tex]x=12[/tex]

Since, the values of x are equivalent, the equation [tex]\log _{2}(x-4)=3[/tex] is equivalent to [tex]x-4=2^{3}[/tex]

Hence, Option C is the correct answer.

Option D: [tex]\log _{3}(x-4)=2[/tex]

Simplifying, we get;

[tex]x-4=3^2[/tex]

[tex]x-4=9[/tex]

     [tex]x=13[/tex]

Since, the values of x are not equivalent, the equation [tex]\log _{3}(x-4)=2[/tex] is not equivalent to [tex]x-4=2^{3}[/tex]

Hence, Option D is not the correct answer.

Answer: C

C)   log Subscript 2 Baseline (x minus 4) = 3