Respuesta :
Answer:
1) X' = mD/(M + m)
2) [tex]V = \frac{mv_{c}}{m + M}[/tex]
3) [tex]w = mv_{c}[\frac{MD}{I(m+M)} ][/tex]
Explanation:
1) mass of stick = M
mass of clay = m
Location of original center of mass of stick, [tex]X_{s}[/tex] = 0 (at the origin)
Location of center of mass of clay, [tex]X_{c}[/tex] = D
X' = location of center of mass of the stick + ball system
The equation below applies for center of mass
X'(M+m) = [tex]MX_{s} + mX_{c}[/tex]
But [tex]X_{s} = 0[/tex] and [tex]X_{c} = D[/tex]
X'(M+m) = M (0) + m (D)
X' = mD/(M + m)
2) Let [tex]v_{c}[/tex] = speed of the clay ball before collision
[tex]v_{s} =[/tex] speed of the stationary stick before collision = 0 m/s
V = speed of the stick-ball system after collision
Applying the principle of momentum conservation
[tex]mv_{c} + Mv_{s} = (m+M)V[/tex]
[tex]mv_{c} + M(0)= (m+M)V\\mv_{c} = (m+M)V\\V = \frac{mv_{c}}{m + M}[/tex]
3)
I = moment of inertia of the stick about the center of mass of the system
Using conservation of angular momentum
[tex]mv_{c} X_{c} -mv_{c}X' = Iw\\mv_{c} D -mv_{c}X' = Iw[/tex]
But X' = mD/(M + m)
[tex]mv_{c} D -mv_{c}\frac{mD}{m+M} = Iw[/tex]
[tex]mv_{c} [D -\frac{mD}{m+M} ] = Iw\\mv_{c} [\frac{mD + MD-mD}{m+M} ] = Iw\\mv_{c}[\frac{MD}{I(m+M)} ] = w[/tex]

(a) The new center mass relative to the center mass of the stick is [tex]\frac{m_1 D}{m_1 + m_2}[/tex].
(b) The final speed of the of the new center mass is [tex]\frac{m_1 v_0}{m_1 + m_2}[/tex].
(c) The final angular momentum of the system is [tex]\frac{m_1D^2 \omega_1}{X_c_m^2(m_1 + m_2)}[/tex].
The given parameters;
- mass of the clay = m₁
- initial velocity of the clay, u₁ = v₀
- let the mass of the stick = m₂
The new center mass relative to the center mass of the stick is calculated as;
[tex]X_{cm} = \frac{m_1 X_1 \ + \ m_2X_2}{m_1 + m_2} \\\\X_{cm} = \frac{m_1(D) \ + \ m_2(0)}{m_1 + m_2} \\\\X_{cm} = \frac{m_1 D}{m_1 + m_2}[/tex]
The final speed of the of the new center mass is calculated as;
[tex]V_{cm} = \frac{m_1(v_0)}{m_1 + m_2} \\\\V_{cm} = \frac{m_1 v_0}{m_1 + m_2}[/tex]
The final angular momentum of the system is calculated as;
[tex]\ I_i \omega_i = I_f \omega _f\\\\m_1D^2\omega_1 + 0 = \omega _f[X_c_m^2(m_1 + m_2)]\\\\\omega_f = \frac{m_1D^2 \omega_1}{X_c_m^2(m_1 + m_2)}[/tex]
Learn more here:https://brainly.com/question/19320213