Respuesta :

Step-by-step explanation:

cotx +2cotxsinx =0

cotx +2 [tex]\frac{cosx}{sinx}[/tex]× sinx= 0

cotx +2 cosx= 0

[tex]\frac{cosx}{sinx}[/tex]+ 2cosx= 0

[tex]\frac{cosx+ 2cosxsinx}{sinx}[/tex] = 0

cosx +2 cosxsinx= 0

cosx ×(1+ 2sinx)= 0

Hence, either cosx= 0 that is x= 90° or 270°

or 1+ 2sinx = 0 that is sinx= [tex]\frac{-1}{2}[/tex] i.e. x= 210° or 330°

As, 0° ≤x≤ 180° ∴ x= 90°

Answer:

90°

Step-by-step explanation: