A mass with mass 4 is attached to a spring with spring constant 25.5625 and a dashpot giving a damping 20. The mass is set in motion with initial position 1 and initial velocity 0. (All values are given in consistent units.) Find the position function x(t):

Respuesta :

m = 4

k = 25.56

b = 20

[tex]x_o=1\\v_o=0[/tex]

The differential equation for damping motion is:

[tex]x''+\gamma x'+\omega_o^2 x=0[/tex]

where,

[tex]\gamma = \frac{b}{m} = \frac{20}{4}=5[/tex]

[tex]\omega_o^2=\frac{k}{m} = \frac{25.56}{4}=6.39[/tex]

Substitute the values in the differential equation and consider x" = r², x' =r and solve:

[tex]x''+5x'+6.39x=0\\r^2+5r+6.39=0\\r=-2.5 \pm0.37i[/tex]

Therefore, solution is given by:

[tex]x(t) = e^{-2.5t}[C_1cos0.37t+C_2sin0.37t][/tex][tex]\\[/tex]

at t = 0, x = 1

[tex]C_1=1[/tex]

[tex]x'(t) =-2.5e^{-2.5t}[C_1cos0.37t+C_2sin0.37t]+e^{2.5t}[-0.37C_1sin0.37t+0.37C_2cos0.37t][/tex]

at t = 0

x' =0

[tex]\\[/tex][tex]C_2=6.76[/tex]

[tex]x(t) = e^{-2.5t}[cos0.37t+6.76sin0.37t][/tex]