Consider the following equation:

f (x) = StartFraction x squared + 4 Over 4 x squared minus 4 x minus 8 EndFraction.
Name the vertical asymptote(s).

Respuesta :

Answer:

[tex]\mathrm{Vertical}:\:x=-1,\:x=2,\:\mathrm{Horizontal}:\:y=\frac{1}{4}[/tex]

Step-by-step explanation:

Your equation is: [tex]f(x)=\frac{x^2+4}{4x^2-4x-8}[/tex]

[tex]\mathrm{If\:the\:degrees\:are\:equal,\:the\:asymptote\:is:\:y=\frac{numerator's\:leading\:coefficient}{denominator's\:leading\:coefficient}}[/tex]

Answer:

x=-1 x=2.... Because this is where the function is undefined...

y=1/4... Because m=n

Step-by-step explanation: