Respuesta :

Given:

The lengths PQ = 4x + 2, QR = 7x – 19, and QU = 34

We need to determine the value of ST.

Value of x:

By two tangent theorem, we have;

PQ = QR

Substituting the values, we get;

  [tex]4x+2=7x-19[/tex]

[tex]-3x+2=-19[/tex]

     [tex]-3x=-21[/tex]

         [tex]x=7[/tex]

Thus, the value of x is 7.

Length of PQ and QR:

Substituting x = 7 in the expressions of PQ and QR, we get the lengths.

Length of PQ = [tex]4(7)+2=28+2=30[/tex]

Length of QR = [tex]7(7)-19=49-19=30[/tex]

Radius of the circle:

The radius of the circle PU can be determined using the Pythagorean theorem.

Thus, we have;

[tex]QU^2=PQ^2+PU^2[/tex]

Substituting the values, we get;

 [tex]34^2=30^2+PU^2[/tex]

[tex]1156=900+PU^2[/tex]

 [tex]256=PU^2[/tex]

   [tex]16=PU[/tex]

Thus, the radius of the circle is 16.

Length of ST:

The length of ST is [tex]ST=SU+UT[/tex]

Substituting SU = UT = 16 because the radius of the circle is 16.

Thus, we have;

[tex]ST=16+16[/tex]

[tex]ST=32[/tex]

Thus, the length of ST is 32.